Spring 2017

CSCI 621: Digital Geometry Processing

8.2 Surface Smoothing

Mesh Optimization

Smoothing

• Low geometric noise

Fairing

• Simplest shape

Decimation

• Low complexity

Remeshing

Triangle Shape

Filter out high frequency noise

Desbrun, Meyer, Schroeder, Barr: *Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow*, SIGGRAPH 99

Filter out high frequency noise

Advanced Filtering

input data

low pass

exaggerate

Kim, Rosignac: Geofilter: Geometric Selection of Mesh Filter Parameters, Eurographics 05

Fair Surface Design

Schneider, Kobbelt: Geometric fairing of irregular meshes for free-form surface design, CAGD 18(4), 2001

Hole filling with energy-minimizing patches

Outline

- Spectral Analysis
- Diffusion Flow
- Energy Minimization

Represent a function as a weighted sum of sines and cosines

Joseph Fourier 1768 - 1830

$$f(x) = a_0 + a_1 \cos(x)$$

Represent a function as a weighted sum of sines and cosines

Joseph Fourier 1768 - 1830

$$f(x) = a_0 + a_1 \cos(x) + a_2 \cos(3x)$$

Represent a function as a weighted sum of sines and cosines

Joseph Fourier 1768 - 1830

$$f(x) = a_0 + a_1 \cos(x) + a_2 \cos(3x) + a_3 \cos(5x)$$

Represent a function as a weighted sum of sines and cosines

Joseph Fourier 1768 - 1830

 $f(x) = a_0 + a_1 \cos(x) + a_2 \cos(3x) + a_3 \cos(5x) + a_4 \cos(7x) + \dots$

Convolution

Smooth signal by convolution with a kernel function

$$h(x) = f * g := \int f(y) \cdot g(x - y) \, \mathrm{d}y$$

Example: Gaussian blurring

Convolution

Smooth signal by convolution with a kernel function

$$h(x) = f * g := \int f(y) \cdot g(x - y) \, \mathrm{d}y$$

Convolution in spatial domain ⇔ Multiplication in frequency domain

$$H(\omega) = F(\omega) \cdot G(\omega)$$

Fourier Analysis

Low-pass filter discards high frequencies

spatial domain

frequency domain

Spatial domain $f(x) \rightarrow$ **Frequency domain** F(w)

$$F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i \omega x} dx$$

Multiply by low-pass filter G(w)

$$F(\omega) \leftarrow F(\omega) \cdot G(\omega)$$

Frequency domain $F(w) \rightarrow$ Spatial domain f(x)

$$f(x) = \int_{-\infty}^{\infty} F(\omega) e^{2\pi i \omega x} d\omega$$

Consider L^2 -function space with inner product

$$\langle f,g \rangle := \int_{-\infty}^{\infty} f(x) \,\overline{g(x)} \, \mathrm{d}x$$

Complex "waves" build an orthonormal basis

$$e_{\omega}(x) := e^{-2\pi i\omega x} = \cos(2\pi\omega x) - i\sin(2\pi\omega x)$$

Fourier transform is a change of basis

$$f(x) = \sum_{\omega = -\infty}^{\infty} \langle f, e_{\omega} \rangle \ e_{\omega} \ d\omega \quad \frown \quad f(x) = \int_{-\infty}^{\infty} \langle f, e_{\omega} \rangle \ e_{\omega} \ d\omega$$

Fourier Analysis on Meshes?

- Only applicable to parametric patches
- Generalize frequency to the discrete setting
- Complex waves are Eigenfunctions of Laplace

$$\Delta \left(e^{2\pi i \omega x} \right) = \frac{\mathrm{d}^2}{\mathrm{d}x^2} e^{2\pi i \omega x} = -\left(2\pi\omega\right)^2 e^{2\pi i \omega x}$$

Use Eigenfunctions of discrete Laplace-Beltrami

Function values sampled at mesh vertices

$$\mathbf{f} = [f_1, f_2, \dots, f_n] \in \mathbb{R}^n$$

• Discrete Laplace-Beltrami (per vertex)

$$\Delta_{\mathcal{S}} f(v_i) := \frac{1}{2A_i} \sum_{v_j \in \mathcal{N}_1(v_i)} \left(\cot \alpha_{ij} + \cot \beta_{ij} \right) \left(f(v_j) - f(v_i) \right)$$

- Discrete Laplace Operator (per mesh)
 - Sparse matrix $\mathbf{L} = \mathbf{DM} \in \mathbb{R}^{n \times n}$

$$\begin{pmatrix} \vdots \\ \Delta_{\mathcal{S}}f(v_i) \\ \vdots \end{pmatrix} = \mathbf{L} \cdot \begin{pmatrix} \vdots \\ f(v_i) \\ \vdots \end{pmatrix}$$

- Discrete Laplace Operator (per mesh)
 - Sparse matrix $\mathbf{L} = \mathbf{DM} \in \mathbb{R}^{n \times n}$

$$\mathbf{M}_{ij} = \begin{cases} \cot \alpha_{ij} + \cot \beta_{ij}, & i \neq j, \ j \in \mathcal{N}_1(v_i) \\ -\sum_{v_j \in \mathcal{N}_1(v_i)} (\cot \alpha_{ij} + \cot \beta_{ij}) & i = j \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbf{D} = \operatorname{diag}\left(\dots, \frac{1}{2A_i}, \dots\right)$$

• Function values sampled at mesh vertices

$$\mathbf{f} = [f_1, f_2, \dots, f_n] \in \mathbb{R}^n$$

• Discrete Laplace-Beltrami (per vertex)

$$\Delta_{\mathcal{S}} f(v_i) := \frac{1}{2A_i} \sum_{v_j \in \mathcal{N}_1(v_i)} \left(\cot \alpha_{ij} + \cot \beta_{ij} \right) \left(f(v_j) - f(v_i) \right)$$

- Discrete Laplace-Beltrami matrix $\mathbf{L} = \mathbf{DM} \in {\rm I\!R}^{n imes n}$
 - Eigenvectors are **natural vibrations**
 - Eigenvalues are **natural frequencies**

- Discrete Laplace-Beltrami matrix $\mathbf{L} = \mathbf{DM} \in \mathrm{I\!R}^{n \times n}$
 - Eigenvectors are natural vibrations
 - Eigenvalues are natural frequencies

Spectral Analysis

- Setup Laplace-Beltrami matrix L
- Compute k smallest eigenvectors $\{\mathbf{e}_1, \ldots, \mathbf{e}_k\}$
- Reconstruct mesh from those (component-wise)

$$\mathbf{x} := [x_1, \dots, x_n] \qquad \mathbf{y} := [y_1, \dots, y_n] \qquad \mathbf{z} := [z_1, \dots, z_n]$$
$$\mathbf{x} \leftarrow \sum_{i=1}^k (\mathbf{x}^T \mathbf{e}_i) \mathbf{e}_i \qquad \mathbf{y} \leftarrow \sum_{i=1}^k (\mathbf{y}^T \mathbf{e}_i) \mathbf{e}_i \qquad \mathbf{z} \leftarrow \sum_{i=1}^k (\mathbf{z}^T \mathbf{e}_i) \mathbf{e}_i$$

Spectral Analysis

- Setup Laplace-Beltrami matrix L
- Compute k smallest eigenvectors $\{\mathbf{e}_1, \ldots, \mathbf{e}_k\}$
- Reconstruct mesh from those (component-wise)

Too complex for

large meshes!

Bruno Levy: *Laplace-Beltrami Eigenfunctions: Towards an algorithm that understands geometry*, Shape Modeling and Applications, 2006

Outline

- Spectral Analysis
- Diffusion Flow
- Energy Minimization

Diffusion Flow on Height Fields

Diffusion equation (this one is heat equation)

diffusion constant

$$\frac{\partial f}{\partial t} = \lambda \Delta f$$
Laplace operator

Diffusion Flow on Meshes

Iterate $\mathbf{p}_i \leftarrow \mathbf{p}_i + \lambda \Delta \mathbf{p}_i$

Uniform Laplace Discretization

- Smoothes geometry and triangulation
- Can be non-zero even for planar triangulation
- Vertex drift can lead to distortions
- Might be desired for mesh regularization

Desbrun et al., Siggraph 1999

Mean Curvature Flow

Use diffusion flow with Laplace-Beltrami

$$\frac{\partial \mathbf{p}}{\partial t} = \lambda \Delta_{\mathcal{S}} \mathbf{p}$$

• Laplace-Beltrami is parallel to surface normal

Mean Curvature Flow

Numerical Integration

• Write update $\mathbf{p}_i^{(t+1)} = \mathbf{p}_i^{(t)} + \lambda \Delta \mathbf{p}_i^{(t)}$ in matrix notation

$$\mathbf{P}^{(t)} = \left(\mathbf{p}_1^{(t)}, \dots, \mathbf{p}_n^{(t)}\right)^T \in \mathbb{R}^{n \times 3}$$

Corresponds to explicit integration

$$\mathbf{P}^{(t+1)} = (\mathbf{I} + \lambda \mathbf{L}) \mathbf{P}^{(t)}$$

Requires small λ for stability!

Implicit integration is unconditionally stable

$$\left(\mathbf{I} - \lambda \mathbf{L}\right) \mathbf{P}^{(t+1)} = \mathbf{P}^{(t)}$$

(backward Euler method)

Outline

- Spectral Analysis
- Diffusion Flow
- Energy Minimization

Fairness

- Idea: Penalize "unaesthetic behavior"
- Measure fairness
 - Principle of the simplest shape
 - Physical interpretation
- Minimize some fairness functional
 - Surface area, curvature
 - Membrane energy, thin plate energy

Minimal Surfaces

Enneper's Surface

Scherk's First Surface

Catenoid

Scherk's Second Surface

Helicoid

Schwarz P Surface

source: http://www.msri.org/about/sgp/jim/geom/minimal/library/index.html

Soap Films

Surface Area

$$dA = \|\mathbf{x}_u \times \mathbf{x}_v\| \, du \, dv$$

infinitesimal
Area = $\sqrt{\mathbf{x}_u^T \mathbf{x}_u \cdot \mathbf{x}_v^T \mathbf{x}_v} - (\mathbf{x}_u^T \mathbf{x}_v)^2 \, du \, dv$
= $\sqrt{EG - F^2} \, du \, dv$

cross product \rightarrow determinant with unit vectors \rightarrow area

Non-Linear Energies

• Membrane energy (surface area)

$$\int_{\mathcal{S}} \mathrm{d}A \to \min \quad \text{with} \quad \delta\mathcal{S} = \mathbf{c}$$

• Thin-plate surface (curvature)

$$\int_{\mathcal{S}} \kappa_1^2 + \kappa_2^2 \, \mathrm{d}A \to \min \quad \text{with} \quad \delta \mathcal{S} = \mathbf{c}, \ \mathbf{n}(\delta \mathcal{S}) = \mathbf{d}$$

• Too complex... simplify energies

Membrane Surfaces

Surface parameterization

$$\mathbf{p}:\Omega\subset {\rm I\!R}^2\to {\rm I\!R}^3$$

• Membrane energy (surface Area)

$$\int_{\Omega} \|\mathbf{p}_u\|^2 + \|\mathbf{p}_v\|^2 \,\mathrm{d} u \,\mathrm{d} v \to \min$$

Variational Calculus in 1D

• 1D membrane energy

$$L(f) = \int_{a}^{b} {f'}^{2}(x) \, \mathrm{d}x \to \min$$

• Add test function u with u(a) = u(b) = 0

$$L(f + \lambda u) = \int_{a}^{b} (f' + \lambda u')_{f}^{2} = \int_{a}^{b} f'^{2} + 2\lambda f' u' + \lambda^{2} {u'}^{2}$$

• If f minimizes L, the following has to vanish

$$\frac{\partial L(f+\lambda u)}{\partial \lambda}\Big|_{\lambda=0} = \int_a^b 2f'u' \stackrel{!}{=} 0$$

Variational Calculus in 1D

• Has to vanish for any u with u(a) = u(b) = 0

$$f'' = \Delta f = 0$$

Euler-Lagrange equation

Bivariate Variational Caculus

• Find minimum of functional

$$\underset{f}{\operatorname{argmin}} \int_{\Omega} L\left(f_{uu}, f_{vv}, f_{u}, f_{v}, f, u, v\right)$$

• Euler-lagrange PDE defines the minimizer

$$\frac{\partial L}{\partial f} - \frac{\partial}{\partial u}\frac{\partial L}{\partial f_u} - \frac{\partial}{\partial v}\frac{\partial L}{\partial f_v} + \frac{\partial^2}{\partial u^2}\frac{\partial L}{\partial f_{uu}} + \frac{\partial^2}{\partial u\partial v}\frac{\partial L}{\partial f_{uv}} + \frac{\partial^2}{\partial v^2}\frac{\partial L}{\partial f_{vv}} = 0$$

Again, subject to suitable boundary constraints

Bivariate Variational Caculus

Surface parameterization

$$\mathbf{p}:\Omega\subset \mathbb{R}^2\to \mathbb{R}^3$$

- Membrane energy (surface area) $\int_{\Omega} \|\mathbf{p}_u\|^2 + \|\mathbf{p}_v\|^2 \,\mathrm{d} u \mathrm{d} v \ \to \ \min$
- Variational caculus

$$\Delta \mathbf{p} = 0$$

Thin-Plate Surface

Surface parameterization

$$\mathbf{p}: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^3$$

• Thin-plate energy (curvature)

$$\int_{\Omega} \left\| \mathbf{p}_{uu} \right\|^2 + 2 \left\| \mathbf{p}_{uv} \right\|^2 + \left\| \mathbf{p}_{vv} \right\|^2 \mathrm{d}u \mathrm{d}v \to \min$$

Variational caculus

$$\Delta^2 \mathbf{p} = 0$$

Energy Functionals

Analysis

Minimizer surfaces satisfy Euler-Lagrange PDE

$$\Delta_{\mathcal{S}}^{k}\mathbf{p} = 0$$

• They are stationary surfaces of Laplacian flow

$$\frac{\partial \mathbf{p}}{\partial t} = \Delta_{\mathcal{S}}^k \mathbf{p}$$

• Explicit flow integration corresponds to iterative solution of linear system

Literature

- Book: Chapter 4
- Levy: Laplace-Beltrami Eigenfunctions: Towards an algorithm that understands geometry, Shape Modeling and Applications, 2006
- Taubin: A signal processing approach to fair surface design, SIGGRAPH 1996
- Desbrun, Meyer, Schroeder, Barr: Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow, SIGGRAPH 1999

Advanced Methods

U. Clarenz, U. Diewald, and M. Rumpf. Nonlinear anisotropic diffusion in surface processing. Proceedings of IEEE Visualization 2000

T. Jones, F. Durand, M. Desbrun Non-Iterative Feature-Preserving Mesh Smoothing ACM Siggraph 2003

A. Bobenko, P. Schroeder Discrete Willmore Flow SGP 2005

Next Time

Levy et al.: Least squares conformal maps for automatic texture atlas generation, SIGGRAPH 2002.

Parameterization

http://cs621.hao-li.com

Thanks!

