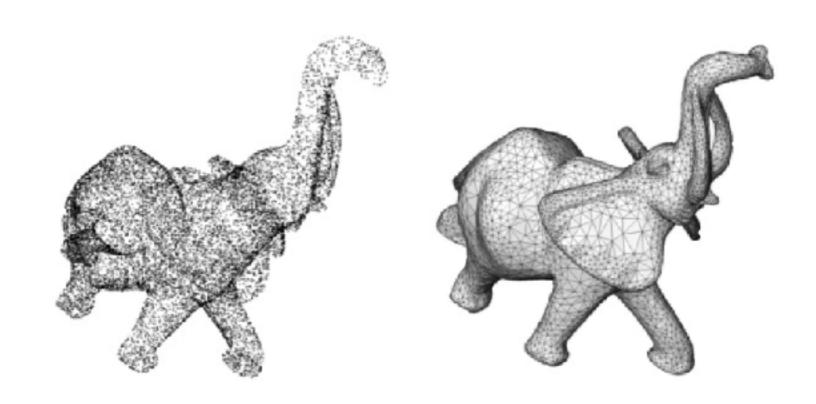
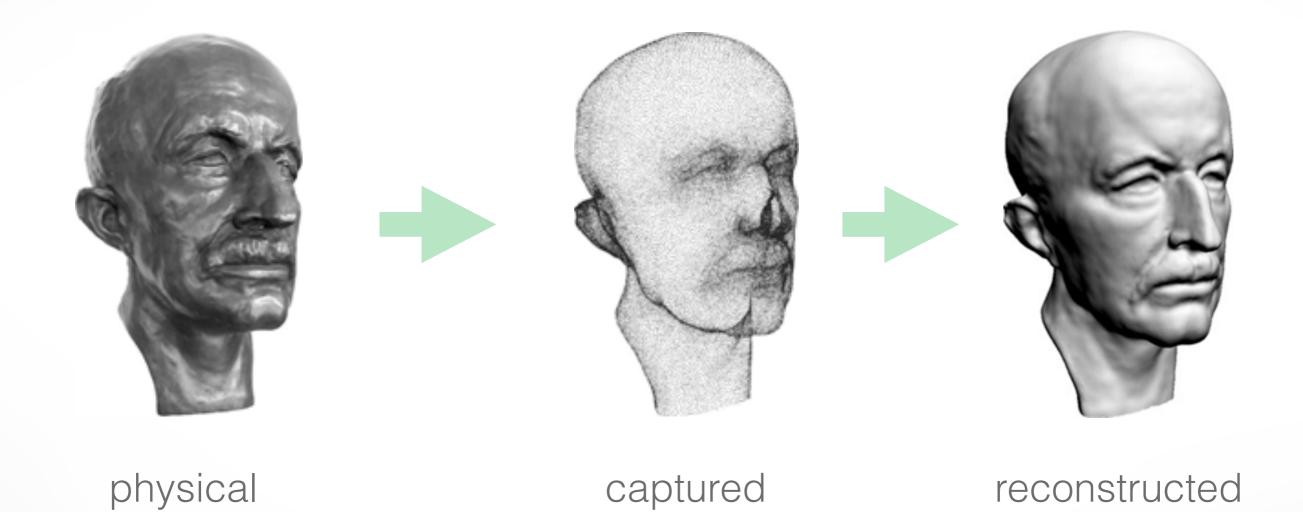
CSCI 621: Digital Geometry Processing



6.2 Surface Reconstruction

Surface Reconstruction



point cloud

model

model

Input Data

Set of irregular sample points

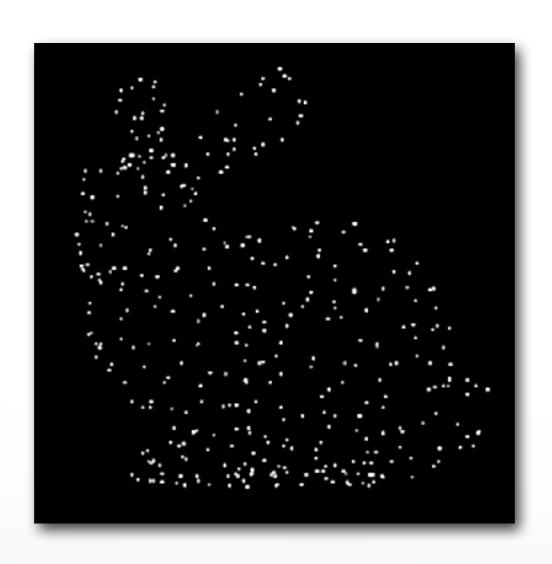
- with or without normals
- examples: multi-view stereo, union of range scan vertices

Set of range scans

- each scan is a regular quad or trimesh
- normal vectors can be obtained through local connectivity

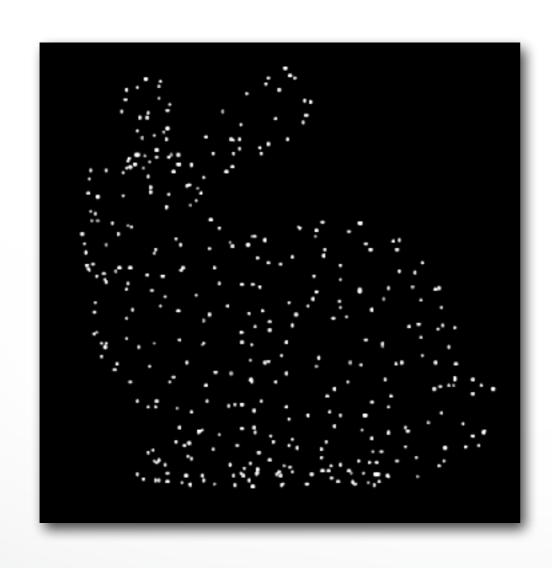
Problem

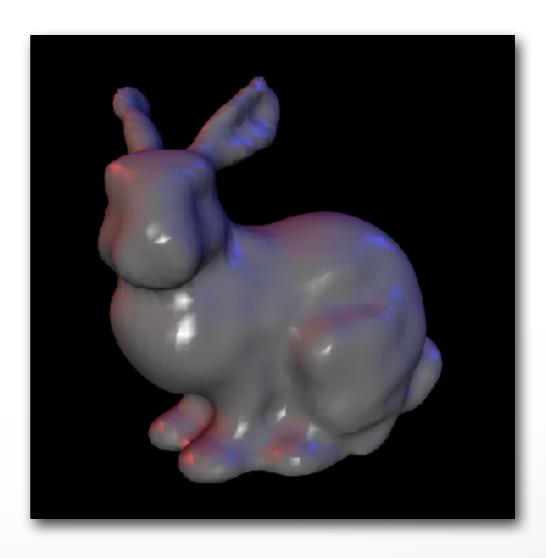
Given a set of points $\mathcal{P} = \{\mathbf{p}_1, \dots, \mathbf{p}_n\}$ with $\mathbf{p}_i \in \mathbb{R}^3$



Problem

Find a manifold surface $\mathcal{S} \subset \mathbb{R}^3$ which approximates \mathcal{P}





Two Approaches

Explicit

Local surface connectivity estimation

Point interpolation

Implicit

Signed distance function estimation

Mesh approximation

Two Approaches

Explicit

- Ball pivoting algorithm
- Delaunay triangulation
- Alpha shapes
- Zippering...

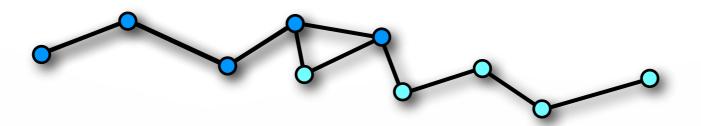
Implicit

- Distance from tangent planes
- SDF estimation via RBF

– ...

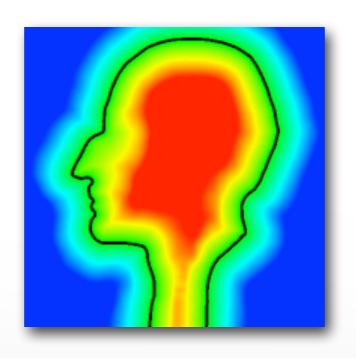
- Image space triangulation

- Connect sample points by triangles
- Exact interpolation of sample points
- Bad for noisy or misaligned data
- Can lead to holes or non-manifold situations



Given a set of points $\mathcal{P} = \{\mathbf{p}_1, \dots, \mathbf{p}_n\}$ with $\mathbf{p}_i \in \mathbb{R}^3$ Find a manifold surface $\mathcal{S} \subset \mathbb{R}^3$ which approximates \mathcal{P}

where $S = \{x \mid d(x) = 0\}$ with d(x) a signed distance function



Data Flow

Point cloud

Signed distance function estimation

$$d(\mathbf{x}) \downarrow$$

Evaluation of distances on uniform grid

$$d(\mathbf{i}), \mathbf{i} = [i, j, k] \in \mathbb{Z}^3 \downarrow$$

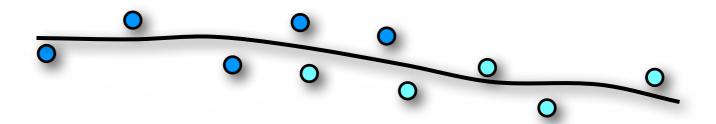
Mesh extraction via marching cubes

Mesh

Implicit Surface Reconstruction Methods

Mainly differ in their signed distance function

- Estimate signed distance function (SDF)
- Extract Zero isosurface by Marching Cubes
- Approximation of input points
- Result is closed two-manifold surface



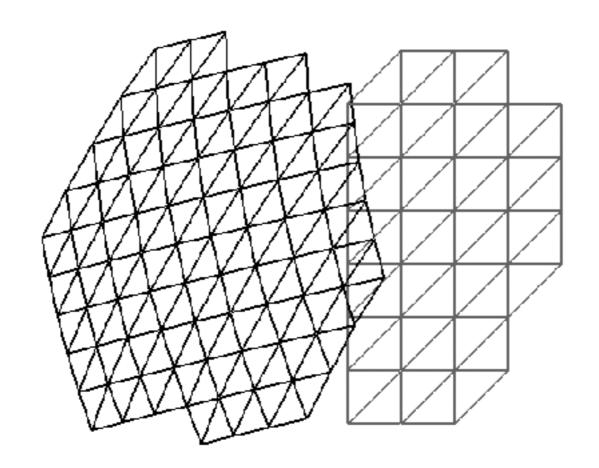
Outline

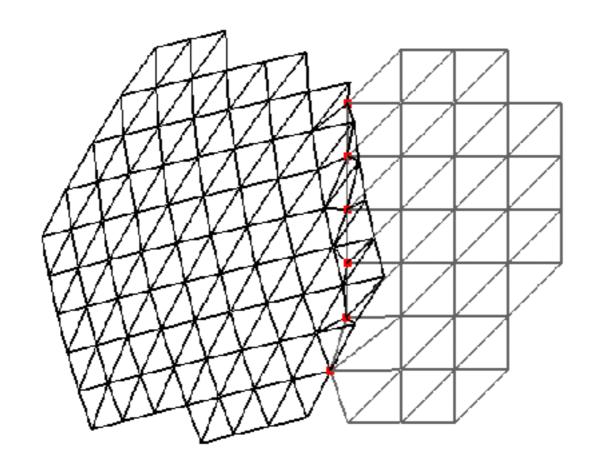
Explicit Reconstruction

Zippering range scans

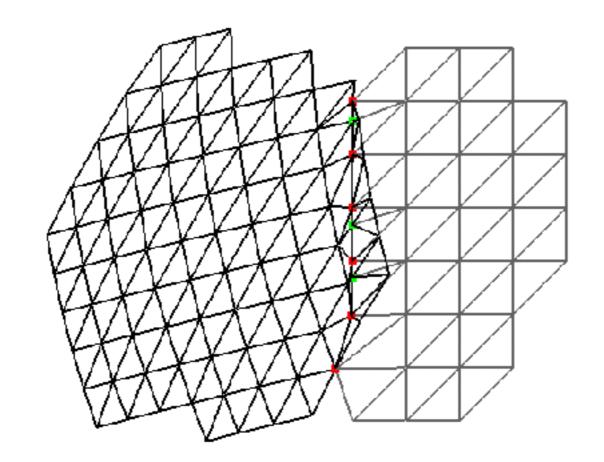
Implicit Reconstruction

- SDF from point clouds
- SDF from range scans
- Poisson surface reconstruction

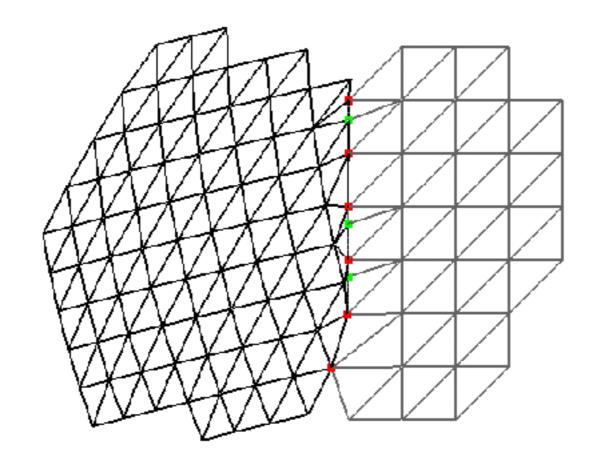




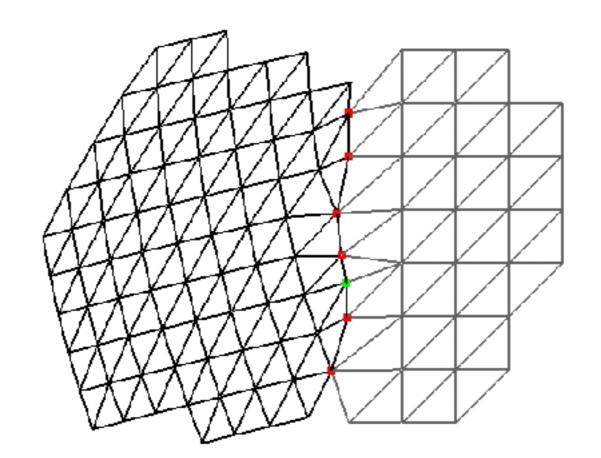
Project & insert boundary vertices



Intersect boundary edges



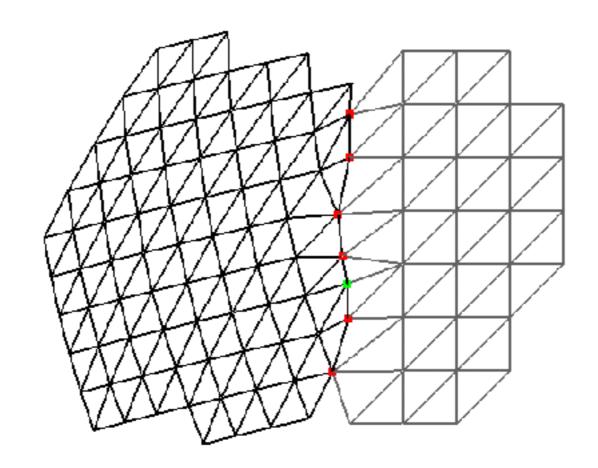
Discard overlap region

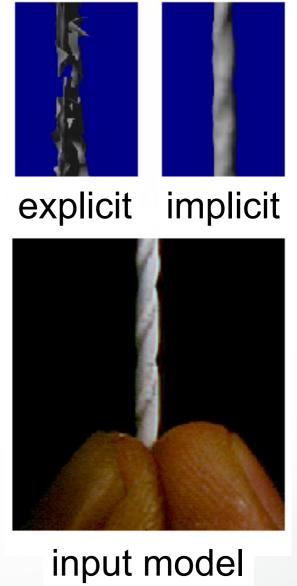


Locally optimize triangulation

"Zipper" several scans to one single model

Problems for intricate geometries...





Mesh Zippering Summary

Pros:

- Preserves regular structure of each scan
- No additional data structures

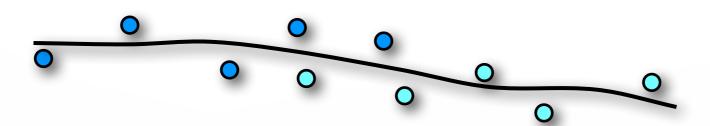
Cons:

- Zippering can be numerically difficult
- Problems with complex, noisy, incomplete data

Outline

- Explicit Reconstruction
 - Zippering range scans
- Implicit Reconstruction
 - SDF from point clouds
 - SDF from range scans
 - Poisson surface reconstruction

- Estimate signed distance function (SDF)
- Extract Zero isosurface by Marching Cubes
- Approximation of input points
- Watertight manifold by construction



Signed Distance Function

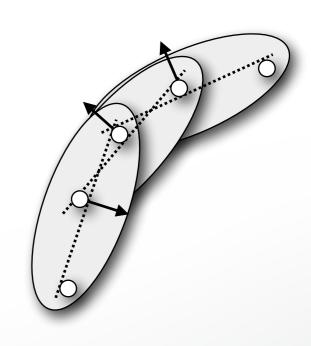
Construct SDF from point samples

- Distance to points is not enough
- Need inside/outside information
- Requires normal vectors



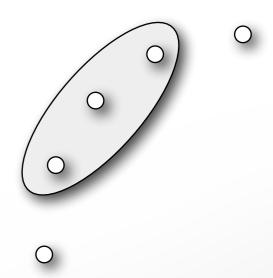
Find normal n_i for each sample point p_i

- Examine local neighborhood for each point
 - Set of k nearest neighbors
- Compute best approximating tangent plane
 - Covariance analysis
- Determine normal orientation
 - Minimal Spanning Tree propagation



Find normal n_i for each sample point p_i

- Examine local neighborhood for each point
 - Set of k nearest neighbors
- Compute best approximating tangent plane
 - Covariance analysis
- Determine normal orientation
 - Minimal Spanning Tree propagation



Find closest point of a query point

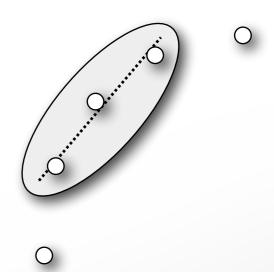
- Find closest point of a query point
 - Brute force: O(n) complexity

Use Hierarchical BSP tree

- Binary space partitioning tree (general version of kD-tree)
- Recursively partition 3D space by planes
- Tree should be balanced, put plane at median
- $\log(n)$ tree levels, complexity $\log(n)$

Find normal n_i for each sample point p_i

- Examine local neighborhood for each point
 - Set of k nearest neighbors
- Compute best approximating tangent plane
 - Covariance analysis
- Determine normal orientation
 - Minimal Spanning Tree propagation



Plane Fitting

Fit a plane with center c and normal n to a set of points $\{p_1, \ldots, p_m\}$

Minimize least squares error

$$E(\mathbf{c}, \mathbf{n}) = \sum_{i=1}^{m} (\mathbf{n}^{T} (\mathbf{p}_{i} - \mathbf{c}))^{2}$$

Subject to non-linear constraint

$$\|\mathbf{n}\| = 1$$

Plane Fitting

Reformulate error function

$$E(\mathbf{c}, \mathbf{n}) = \sum_{i=1}^{m} (\mathbf{n}^{T} (\mathbf{p}_{i} - \mathbf{c}))^{2}$$

$$= \sum_{i=1}^{m} (\mathbf{n}^{T} \hat{\mathbf{p}}_{i})^{2} \quad \text{(with } \hat{\mathbf{p}}_{i} := \mathbf{p}_{i} - \mathbf{c})$$

$$= \sum_{i=1}^{m} \hat{\mathbf{p}}_{i}^{T} \mathbf{n} \mathbf{n}^{T} \hat{\mathbf{p}}_{i} \quad \text{(version 1)}$$

$$= \sum_{i=1}^{m} \mathbf{n}^{T} \hat{\mathbf{p}}_{i} \hat{\mathbf{p}}_{i}^{T} \mathbf{n} \quad \text{(version 2)}$$

Determine c from version 1

Derivative of $E(\mathbf{c}, \mathbf{n})$ w.r.t. \mathbf{c} has to vanish

$$\frac{\partial E(\mathbf{c}, \mathbf{n})}{\partial \mathbf{c}} = \sum_{i=1}^{m} -2 \, \mathbf{n} \mathbf{n}^{T} \hat{\mathbf{p}}_{i} = -2 \, \mathbf{n} \mathbf{n}^{T} \sum_{i=1}^{m} \hat{\mathbf{p}}_{i} \stackrel{!}{=} 0$$

This is only possible for

$$\sum_{i=1}^{m} \hat{\mathbf{p}}_i = 0 \quad \Rightarrow \quad \mathbf{c} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{p}_i$$

Plane center is barycenter of points P_i

Determine n from version 2

Represent n in basis e_1, e_2, e_3

$$\mathbf{n} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \alpha_3 \mathbf{e}_3$$

Since n has unit length we get

$$1 = \mathbf{n}^{\mathsf{T}} \mathbf{n} = \alpha_1^2 + \alpha_2^2 + \alpha_3^2$$

Insert into energy formulation

$$\mathbf{n}^T \mathbf{C} \mathbf{n} = \alpha_1^2 \lambda_1 + \alpha_2^2 \lambda_2 + \alpha_3^2 \lambda_3 \geq \alpha_1^2 \lambda_3 + \alpha_2^2 \lambda_3 + \alpha_3^2 \lambda_3 = \lambda_3$$

Minimum is achieved for
$$\alpha_1 = \alpha_2 = 0, \alpha_3 = 1 \Rightarrow \mathbf{n} = \mathbf{e}_3$$

Principal Component Analysis

Plane center is barycenter of points

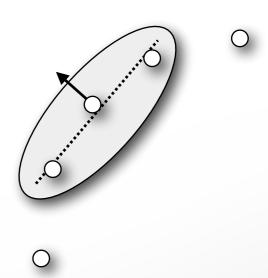
$$\mathbf{c} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{p}_i$$

Normal is eigenvector w.r.t. smallest eigenvalue of covariance matrix

$$\mathbf{C} = \sum_{i=1}^{m} (\mathbf{p}_i - \mathbf{c}) (\mathbf{p}_i - \mathbf{c})^T$$

Find normal n_i for each sample point p_i

- Examine local neighborhood for each point
 - Set of k nearest neighbors
- Compute best approximating tangent plane
 - Covariance analysis
- Determine normal orientation
 - Minimal Spanning Tree propagation



Normal Orientation

Riemannian graph connects neighboring points

• Edge (ij) exists if $\mathbf{p}_i \in k\mathrm{NN}(\mathbf{p}_j)$ or $\mathbf{p}_j \in k\mathrm{NN}(\mathbf{p}_i)$

Propagate normal orientation through graph

- For neighbors $\mathbf{p}_i, \mathbf{p}_j$ Flip \mathbf{n}_j if $\mathbf{n}_i^{\top} \mathbf{n}_j < 0$
- Fails at sharp edges/corners

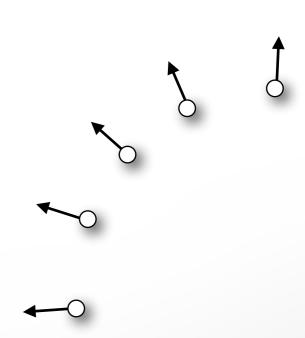
Propagate along "save" paths (parallel normals)

Minimum spanning tree with angle-based edge weights

$$w_{ij} = 1 - |\mathbf{n}_i^\top \mathbf{n}_j|$$

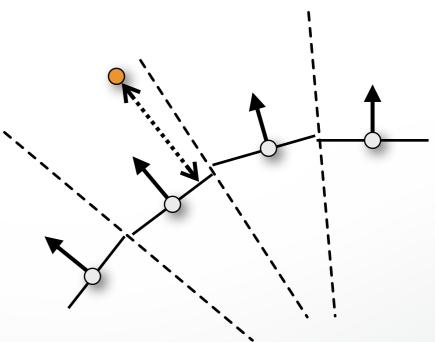
Find normal n_i for each sample point p_i

- Examine local neighborhood for each point
 - Set of k nearest neighbors
- Compute best approximating tangent plane
 - Covariance analysis
- Determine normal orientation
 - Minimal Spanning Tree propagation

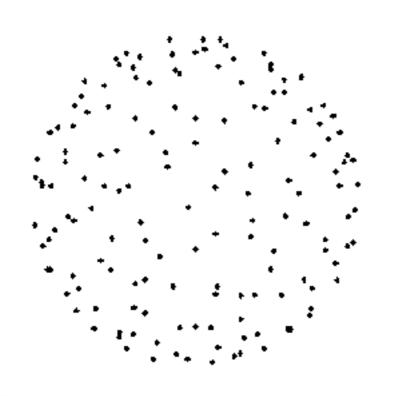


Distance from tangent planes [Hoppe 92]

- Points + normals determine local tangent planes
- Use distance from closest point's tangent plane
- Linear approximation in Voronoi cell
- ullet Simple and efficient, but SDF is only $\,\mathcal{C}^{-1}$



Hoppe '92 Reconstruction



150 samples

reconstruction on 50³ grid

Smooth SDF Approximation

Scattered data interpolation problem

On-surface constraints

 $\operatorname{dist}(\mathbf{p}_i) = 0$

Avoid trivial solution

 $dist \equiv 0$

Off-surface constraints

$$\operatorname{dist}(\mathbf{p}_i + \mathbf{n}_i) = 1$$

Radial basis functions (RBFs)

- Well suited for smooth interpolation
- Sum of shifted, weighted kernel functions

$$\operatorname{dist}(\mathbf{x}) = \sum_{i} w_{i} \cdot \varphi(\|\mathbf{x} - \mathbf{c}_{i}\|)$$

RBF Interpolation

Interpolate on- and off-surface constraints

$$\operatorname{dist}(\mathbf{x}_j) = \sum_{i=1}^n w_i \cdot \varphi(\|\mathbf{x}_j - \mathbf{c}_i\|) \stackrel{!}{=} d_j, \quad j = 1, \dots, n$$

Choose centers c_i as constrained points x_i

Solve symmetric linear system for weights w_i

$$\begin{pmatrix} \varphi(\|\mathbf{x_1} - \mathbf{x_1}\|) & \cdots & \varphi(\|\mathbf{x_1} - \mathbf{x_n}\|) \\ \vdots & \ddots & \vdots \\ \varphi(\|\mathbf{x_n} - \mathbf{x_1}\|) & \cdots & \varphi(\|\mathbf{x_n} - \mathbf{x_n}\|) \end{pmatrix} \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} d_1 \\ \vdots \\ d_n \end{pmatrix}$$

RBF Interpolation

Wendland basis functions

$$\varphi(r) = \left(1 - \frac{r}{\sigma}\right)_{+}^{4} \left(4\frac{r}{\sigma} + 1\right)$$

- Compactly supported in $[0,\sigma]$
- Leads to sparse, symm. pos. def. linear system
- Resulting SDF is \mathcal{C}^2 smooth
- But surface is not necessarily fair
- Not suited for highly irregular sampling

Comparison

Hoppe '92

Compact RBF Wendland C²

RBF Basis Functions

Triharmonic basis functions

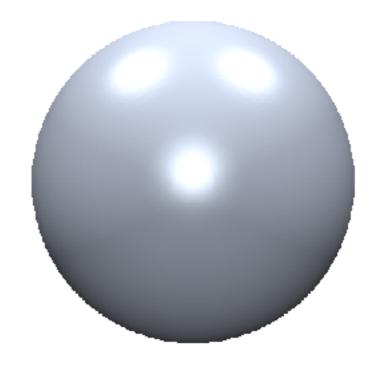
$$\phi(r) = r^3$$

- Globally supported function
- Leads to dense linear system
- SDF is \mathcal{C}^2 smooth
- Provably optimal fairness (see smoothing lecture)

$$\int_{\mathbb{R}^3} \left(\frac{\partial^3 \operatorname{dist}}{\partial x \, \partial x \, \partial x} \right)^2 + \left(\frac{\partial^3 \operatorname{dist}}{\partial x \, \partial x \, \partial y} \right)^2 + \dots + \left(\frac{\partial^3 \operatorname{dist}}{\partial z \, \partial z \, \partial z} \right)^2 \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \, \to \, \min$$

Works well for irregular sampling

Comparison



Hoppe '92

Compact RBF Wendland C²

Global RBF Triharmonic

Complexity Considerations

Solve the linear system for RBF weights

Hard to solve for large number of samples

Compactly supported RBFs

- Sparse linear system
- Efficient CG or sparse Cholesky solver (later...)

Greedy RBF fitting [Carr01]

- Start with a few RBFs only
- Add more RBFs in region of large error

SDF From Points

Pros:

- Result is a closed 2-manifold surface
- Suitable for noisy input data

Cons:

- Solve linear system of RBF weights
- Result is uniformly over-tessellated → mesh decimation
- Can contain poorly shaped triangles → remeshing

Outline

- Explicit Reconstruction
 - Zippering range scans
- Implicit Reconstruction
 - SDF from point clouds
 - SDF from range scans
 - Poisson surface reconstruction

Weighted Average of SDFs

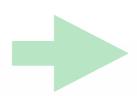
Individual SDFs of each scan: $d_i(\mathbf{x})$

Distance along scanner's line of sight

Respective weighting functions: $w_i(\mathbf{x})$

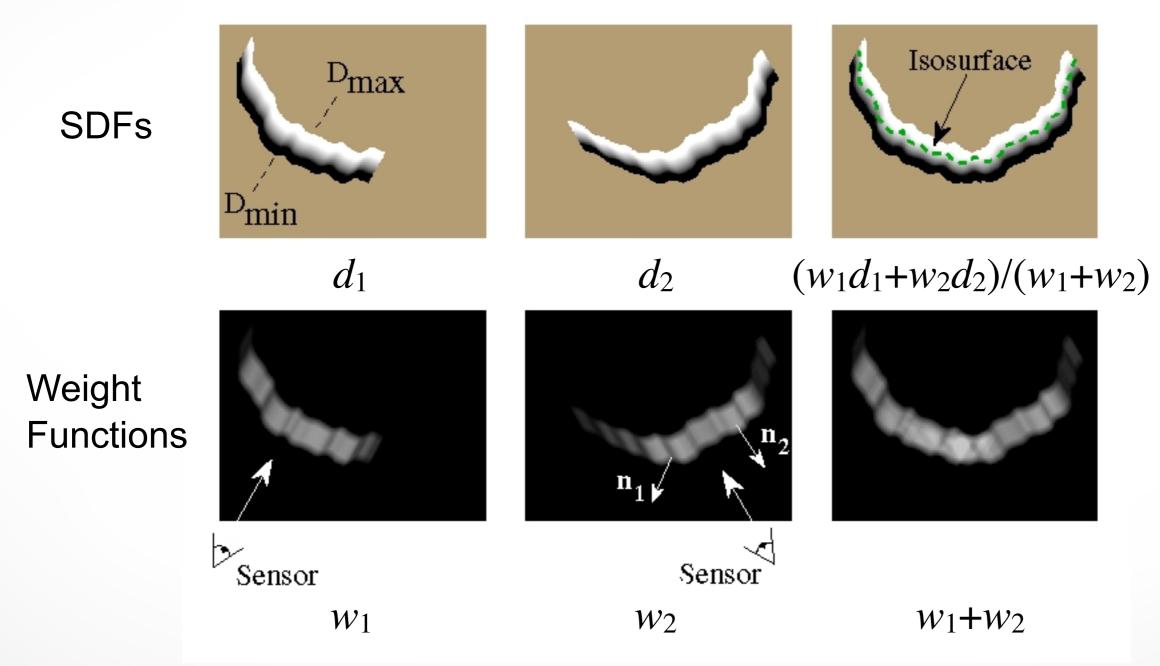
Take scanning angle into account

Global SDF as weighted average



$$D(\mathbf{x}) = \frac{\sum_{i} w_{i}(\mathbf{x}) d_{i}(\mathbf{x})}{\sum_{i} w_{i}(\mathbf{x})}$$

Weighted Average of SDFs



[Curless,Levoy96]

Automatic Hole Filling

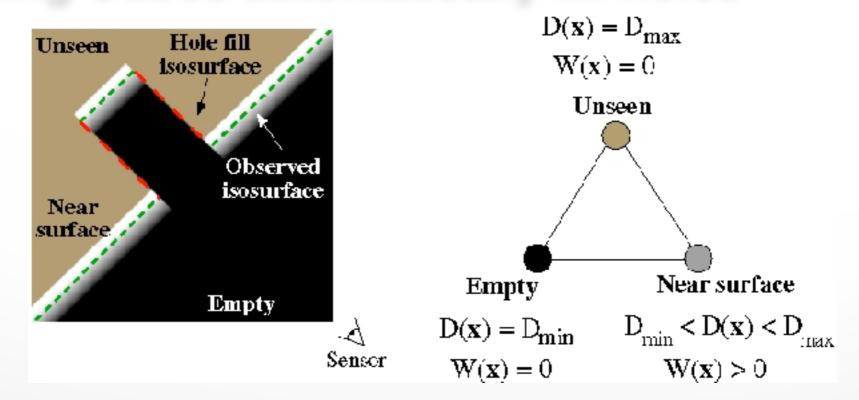
Classify grid voxel into three states

• Empty: Between scanner and surface (space carving)

Unseen: Behind surface

Near surface: Close to scanned surface

Marching Cubes automatically fill holes



[Curless,Levoy96]

Volumetric Reconstruction

Happy Buddha: from original to hardcopy

Photograph of original model

Photograph of painted original

Range surface from one scan

Reconstruction before hole-filling

Reconstruction after hole–filling

Hardcopy

[Curless,Levoy96]

Digital Michelangelo Project





4G sample points → 8M triangles

SDF From Range Scans

Pros:

- Result is a closed 2-manifold surface
- Can take scanning information into account

Cons:

- Result is uniformly over-tesselated → mesh decimation
- Can contain poorly shaped triangles → remeshing

References

Reconstruction from point sets

- Hoppe et al.: Surface Reconstruction from Unorganized Points, SIGGRAPH 1992
- Carr etl a.: Reconstruction and representation of 3D objects with radial basis functions, SIGGRAPH 2001

Reconstruction of range scans

- Curless, Levoy: A Volumetric Method for Building Complex Models from Range Images, SIGGRAPH 1996.
- Levoy et al.: Digital Michalangelo Project: 3D Scanning of Large Statues, SIGGRAPH 2000.

Outline

- Explicit Reconstruction
 - Zippering range scans
- Implicit Reconstruction
 - SDF from point clouds
 - SDF from range scans
 - Poisson surface reconstruction

Poisson Surface Reconstruction

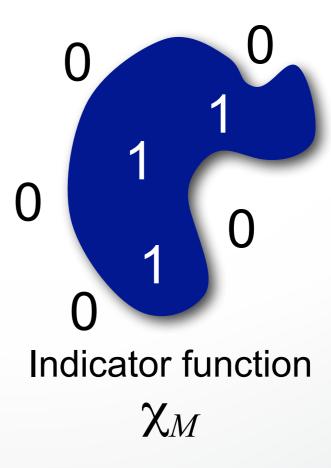
- Michael Kazhdan, M. Bolitho, and H. Hoppe, SGP 2006
- Source Code available at:
 - http://www.cs.jhu.edu/~misha/
- Implementation included in Meshlab

Poisson Surface Reconstruction

Indicator Function

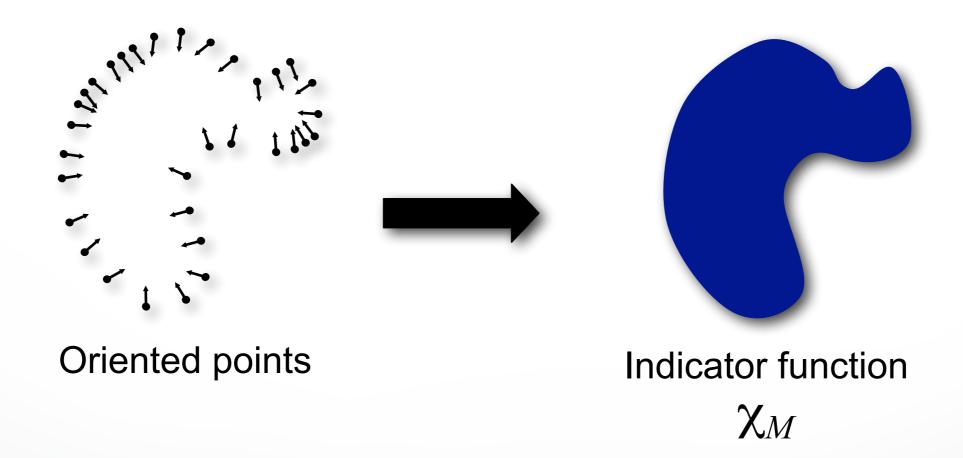
 reconstruct the surface by solving for the indicator function of the shape

$$\chi_M(p) = \begin{cases} 1 & \text{if } p \in M \\ 0 & \text{if } p \notin M \end{cases}$$



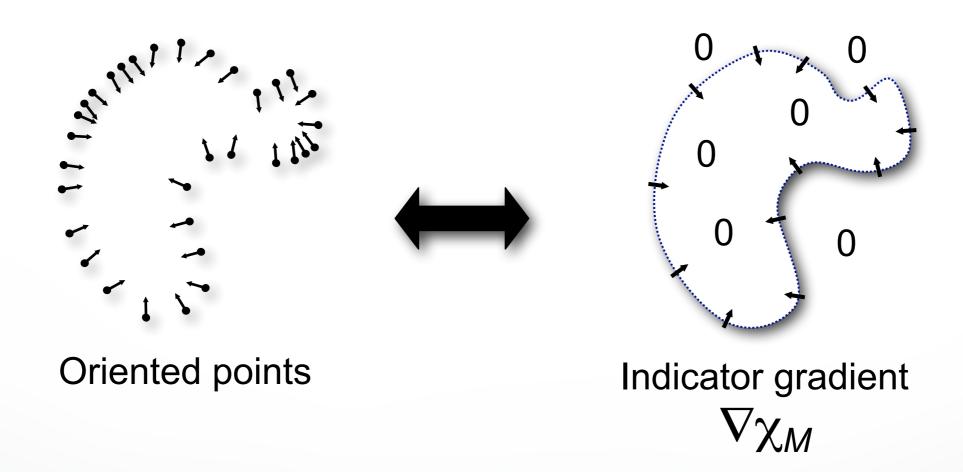
Challenge

How to construct the indicator function?



Gradient Relationship

There is a relationship between the normal field and gradient of indicator function



Integration

Represent the points by a vector field \vec{V}

Find the function χ whose gradient best approximates \vec{V}

$$\min_{\chi} \|\nabla \chi - \vec{V}\|$$

Integration as a Poisson Problem

Represent the points by a vector field $ec{V}$

Find the function χ whose gradient best approximates \vec{V}

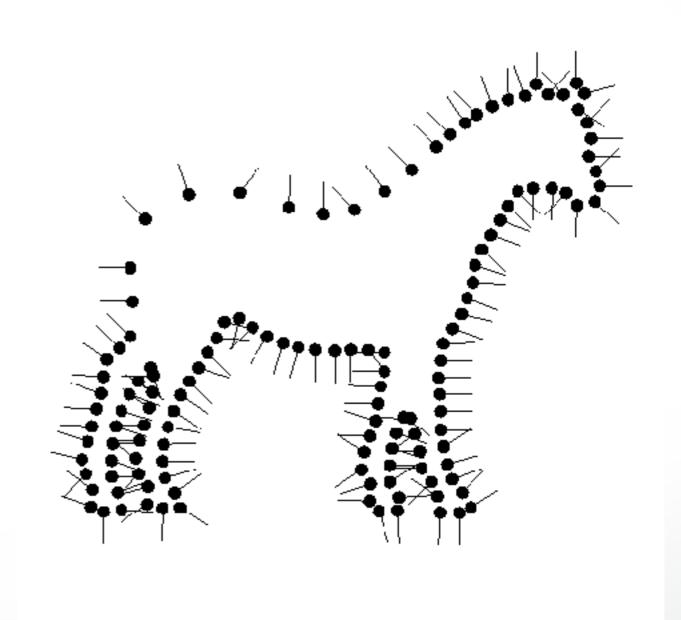
$$\min_{\chi} \|\nabla \chi - \vec{V}\|$$

Applying the divergence operator, we can transform this into a Poisson problem:

$$\nabla \times (\nabla \chi) = \nabla \times \vec{V} \quad \Leftrightarrow \quad \Delta \chi = \nabla \times \vec{V}$$

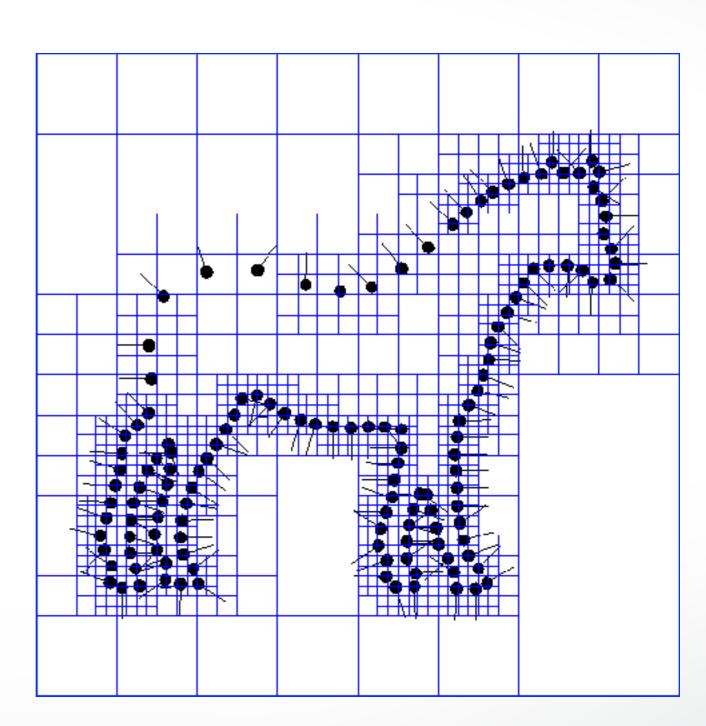
Implementation: Adaptive Octree

- Set Octree
- Compute vector field
- Compute indicator function
- Extract iso-surface

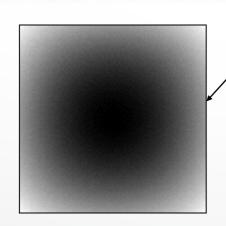


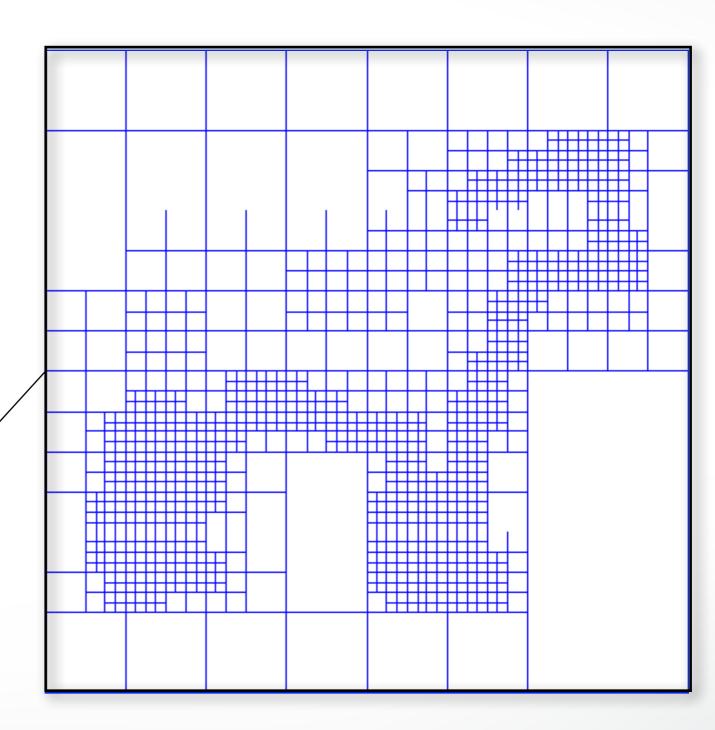
Implementation: Adaptive Octree

- Set Octree
- Compute vector field
- Compute indicator function
- Extract iso-surface

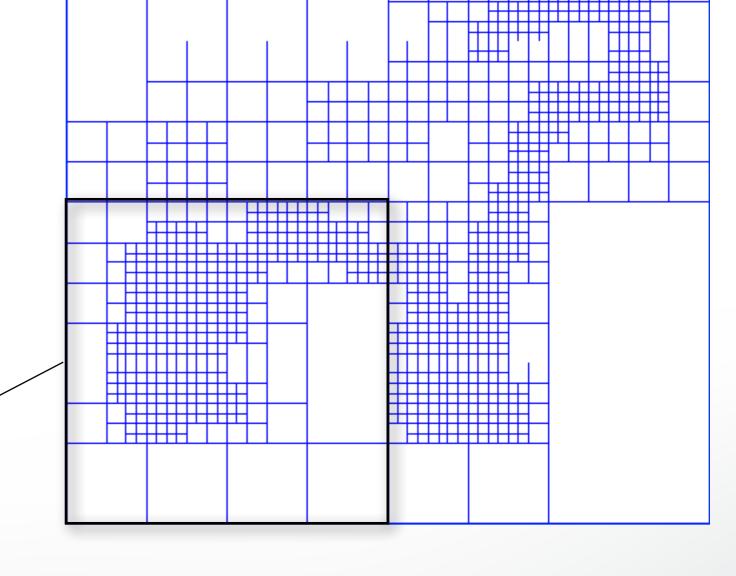


- Set Octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface

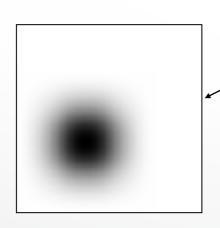


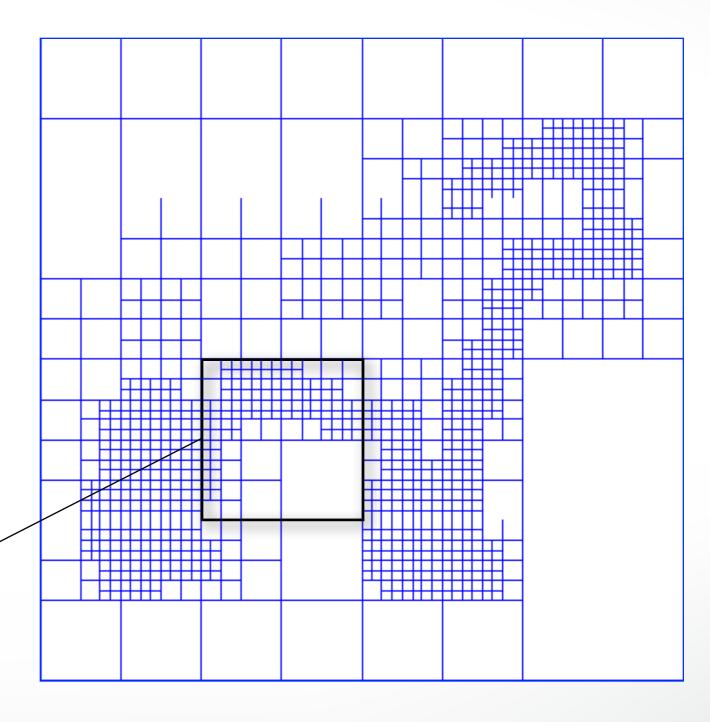


- Set Octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface

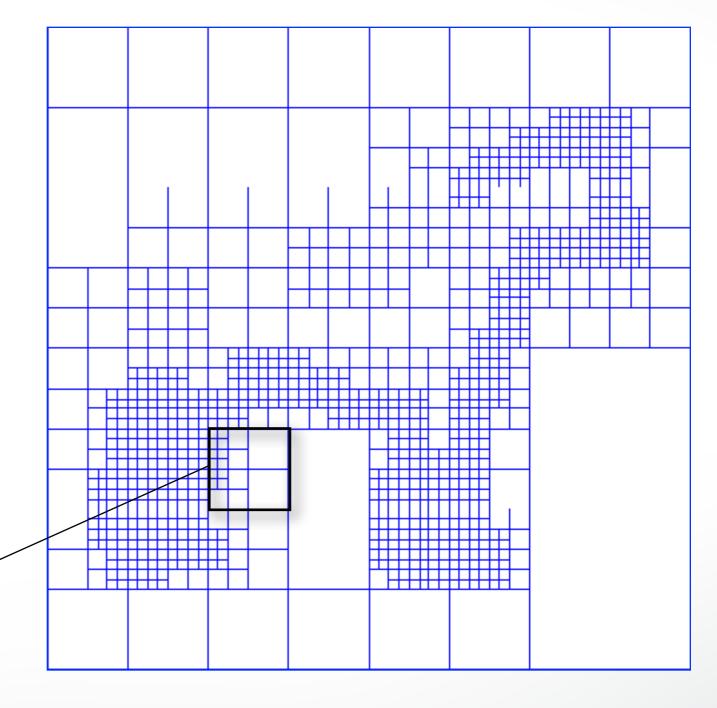


- Set Octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface

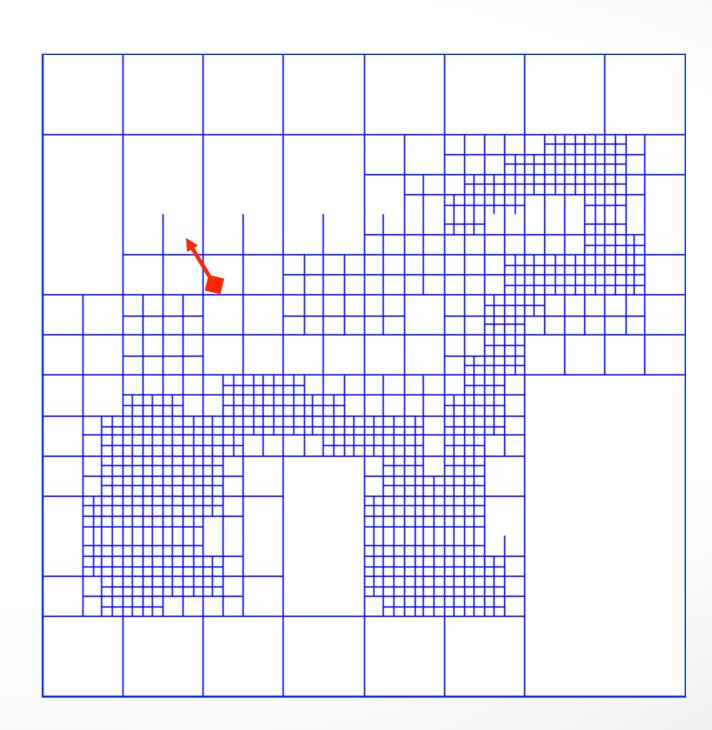




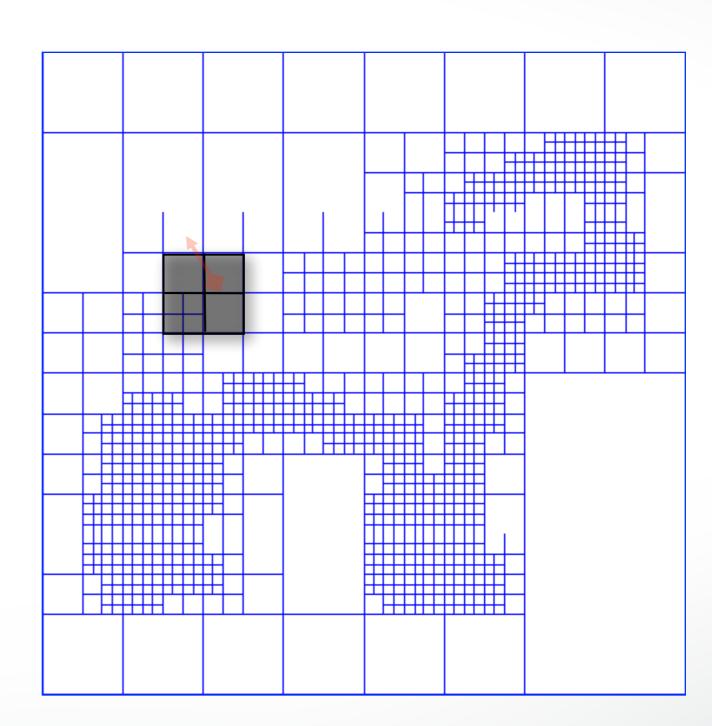
- Set Octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface



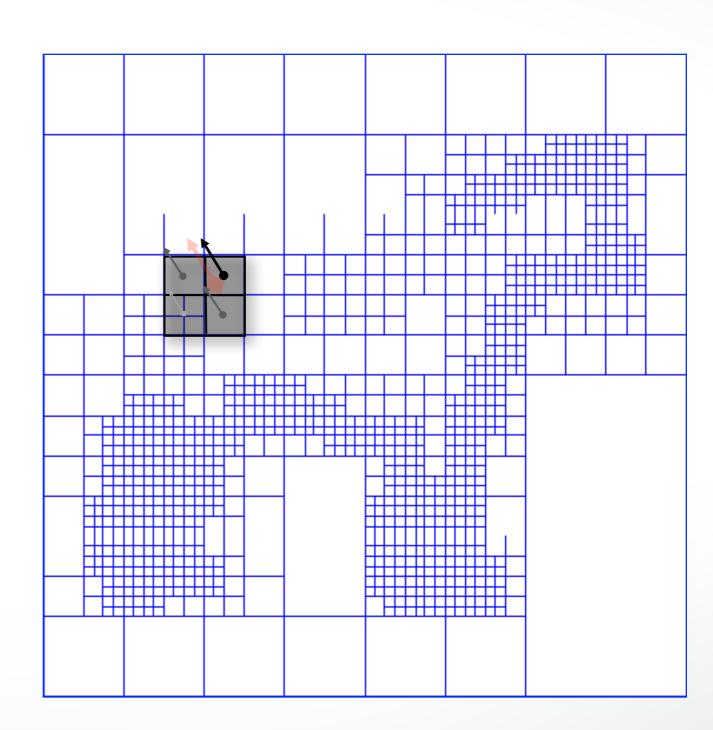
- Set Octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface



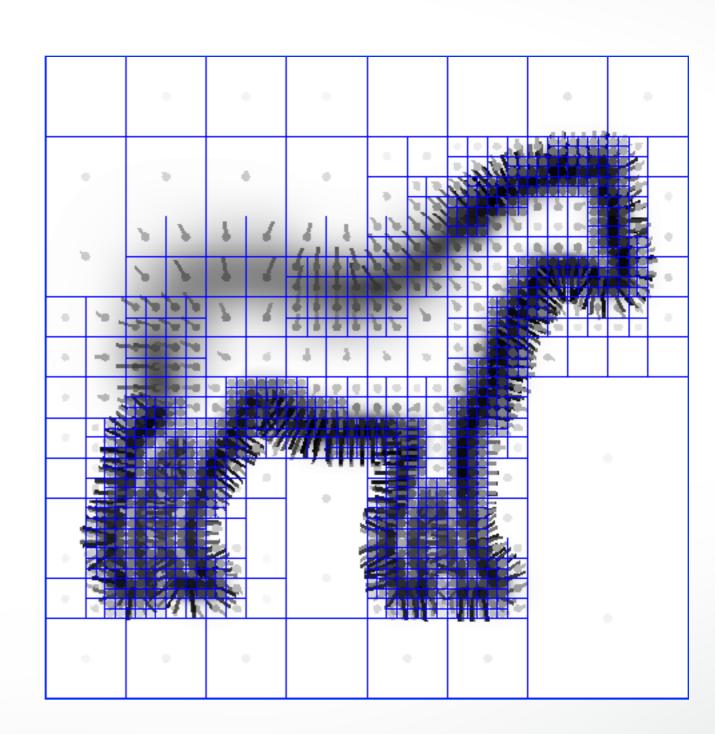
- Set Octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface



- Set Octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface

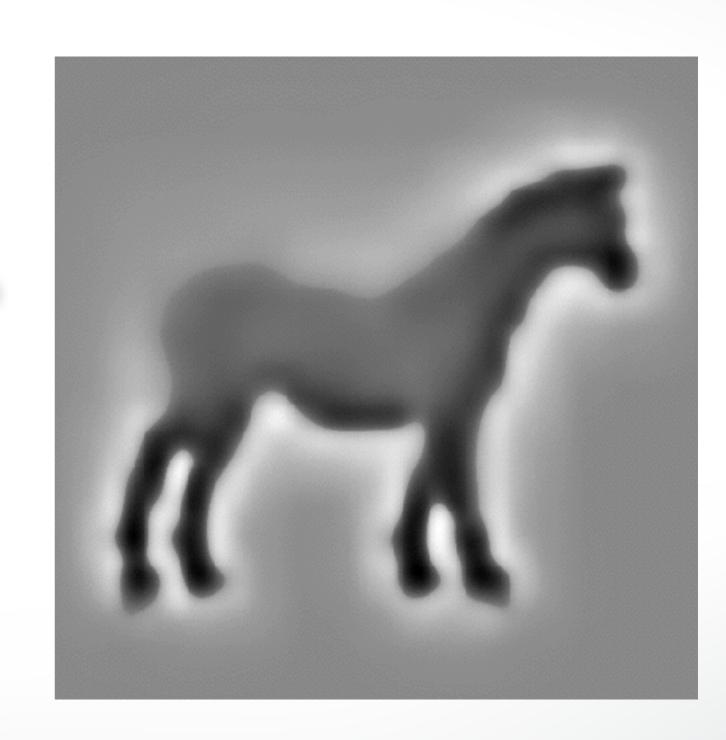


- Set Octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface



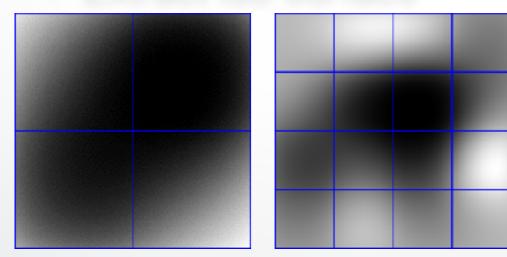
Implementation: Indicator Function

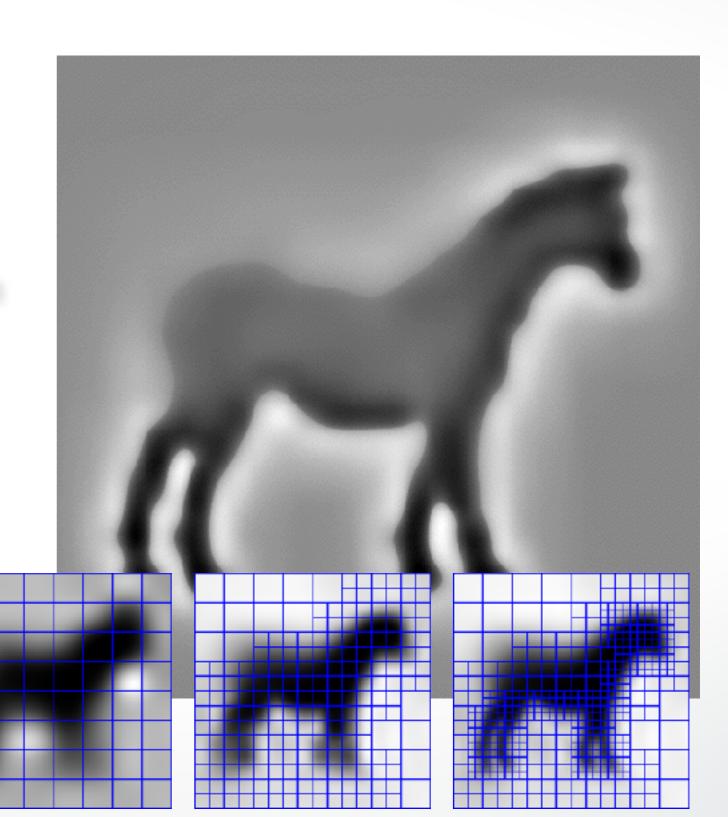
- Set Octree
- Compute vector field
- Compute indicator function
 - Compute divergence
 - Solve Poisson Equation
- Extract iso-surface



Implementation: Indicator Function

- Set Octree
- Compute vector field
- Compute indicator function
 - Compute divergence
 - Solve Poisson Equation
- Extract iso-surface

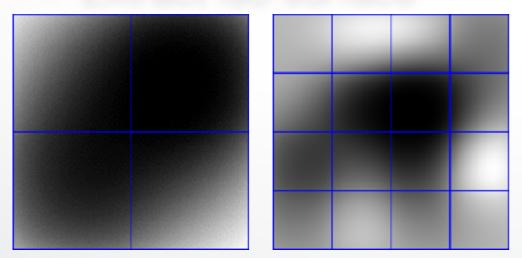


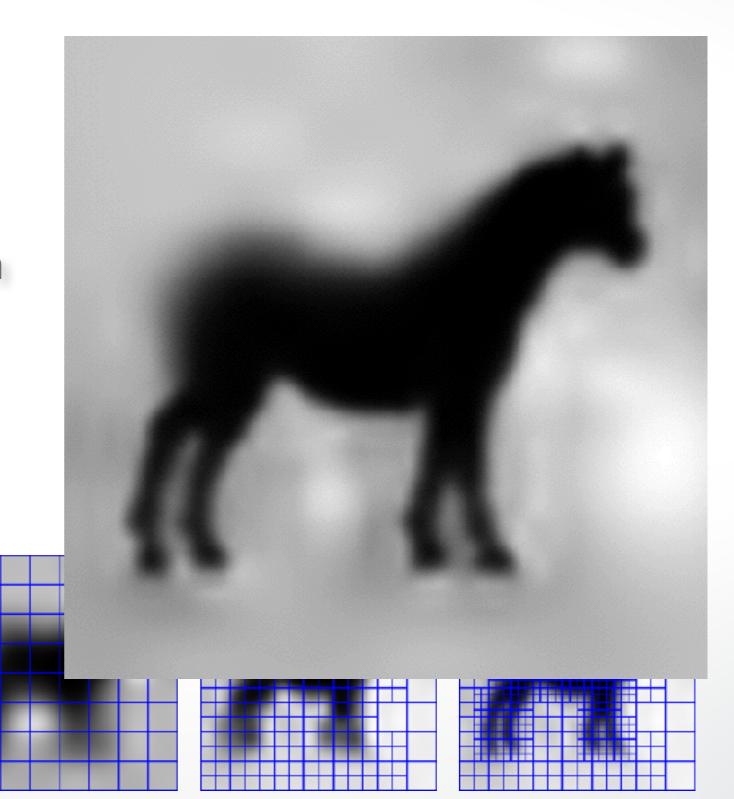


Implementation: Indicator Function

Given the Points:

- Set Octree
- Compute vector field
- Compute indicator function
 - Compute divergence
 - Solve Poisson Equation
- Extract iso-surface

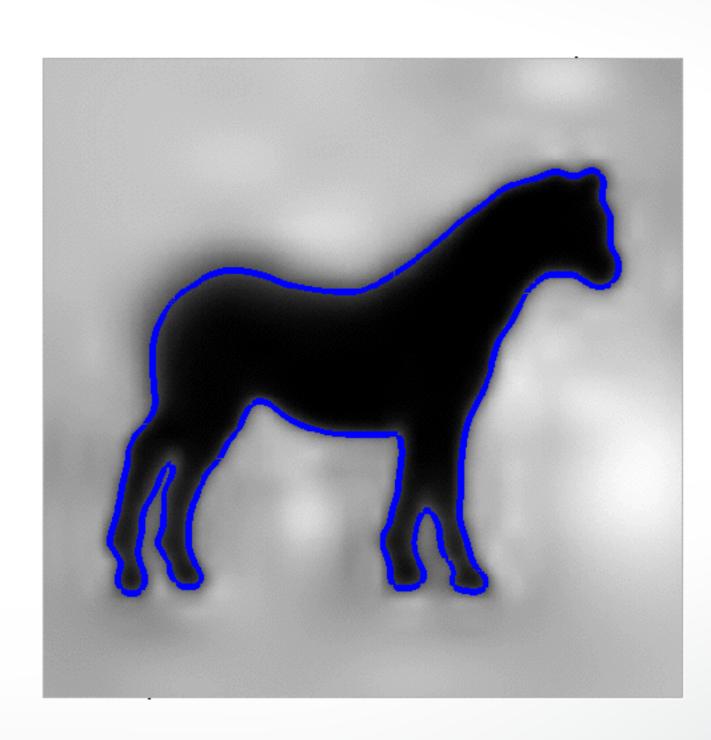




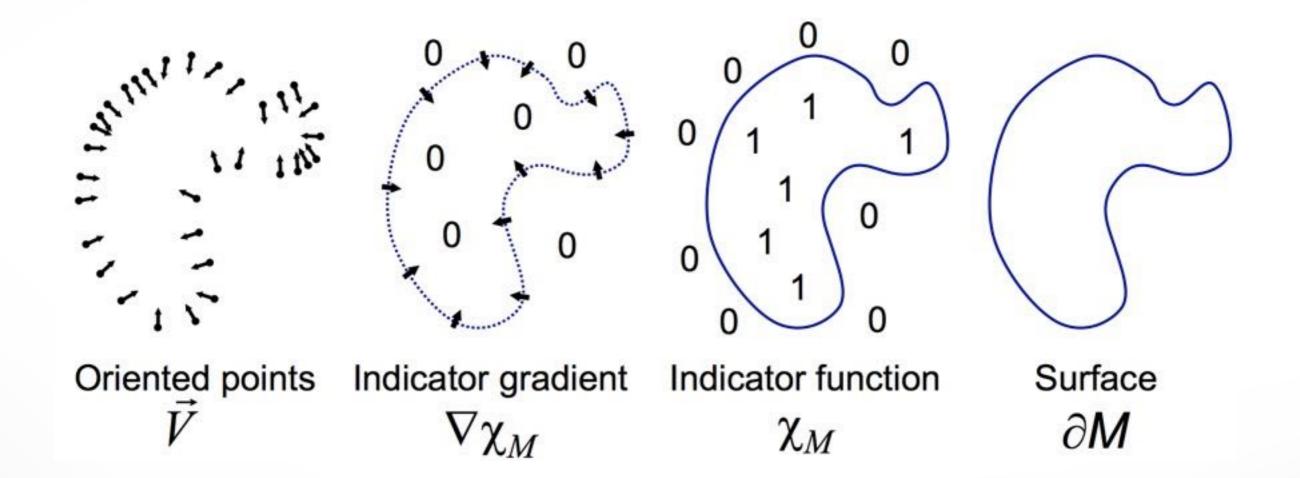
Implementation: Iso-Surface

Given the Points:

- Set Octree
- Compute vector field
- Compute indicator function
- Extract iso-surface



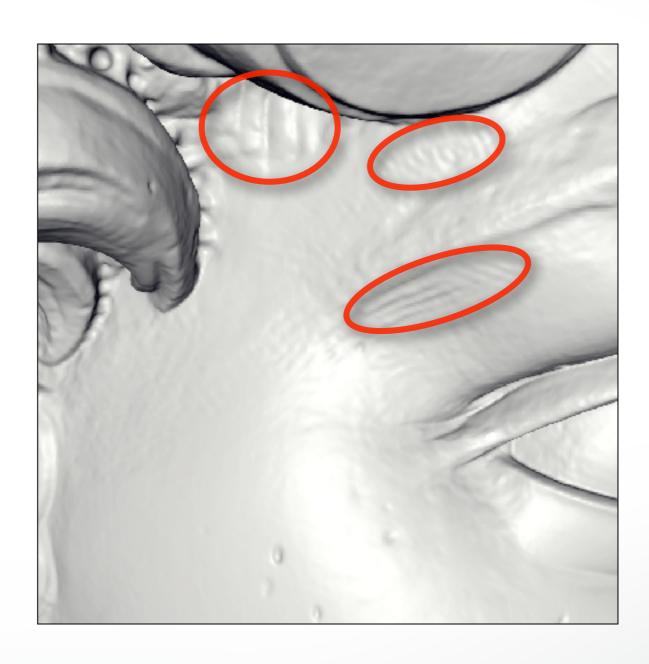
Summary



Michelangelo's David

- 215 million data points from 1000 scans
- 22 million triangle reconstruction
- Compute Time: 2.1 hours
- Peak Memory: 6600MB

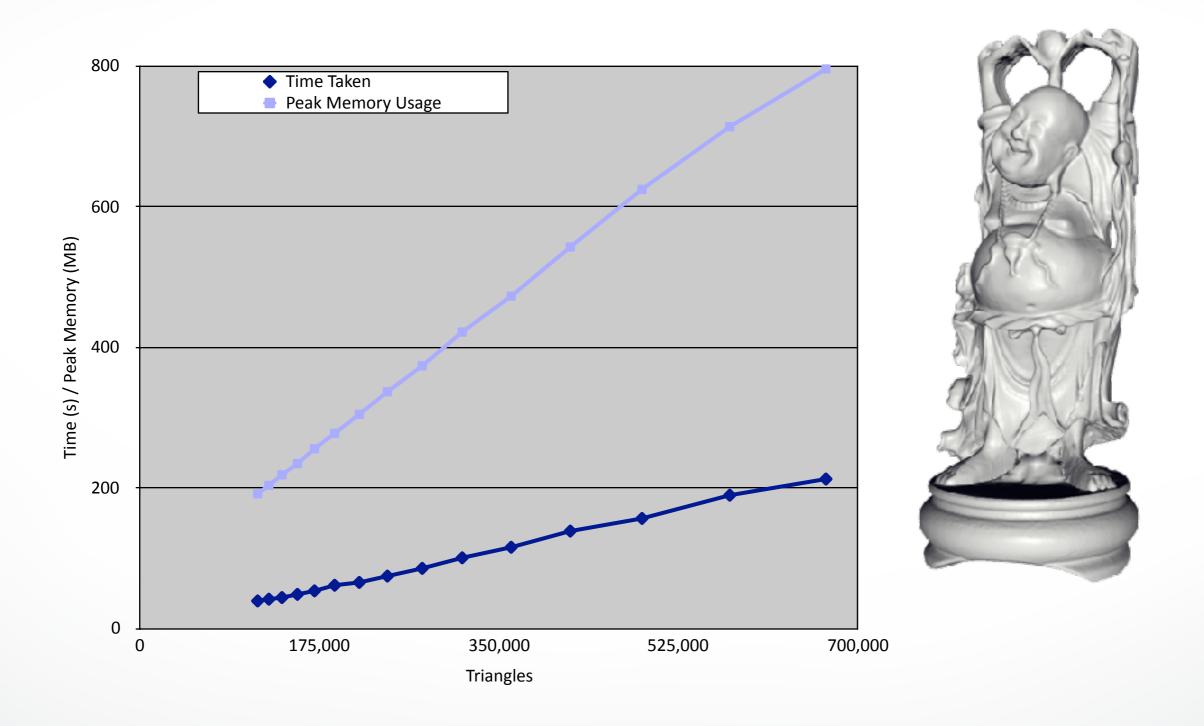
David - Chisel marks



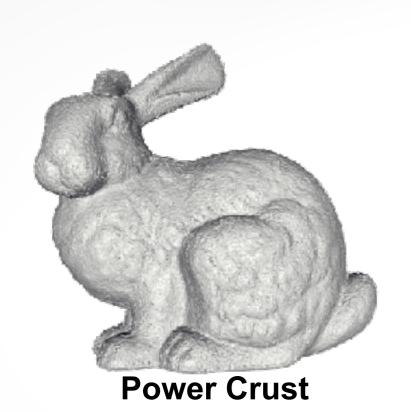
David – Drill marks

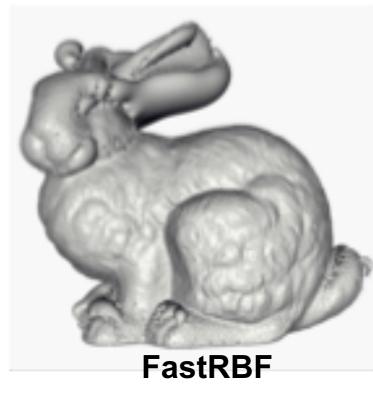
David – Drill marks

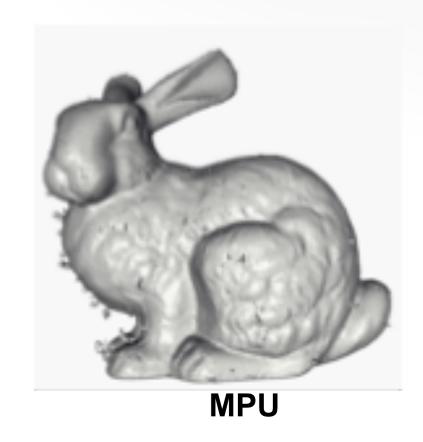
Scalability – Buddha Model

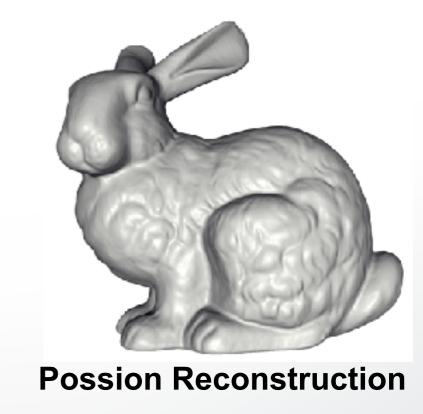


Stanford Bunny



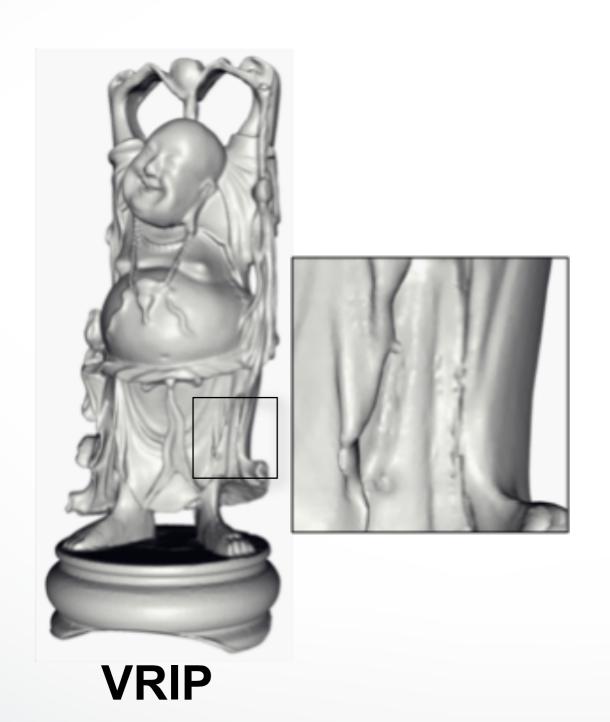


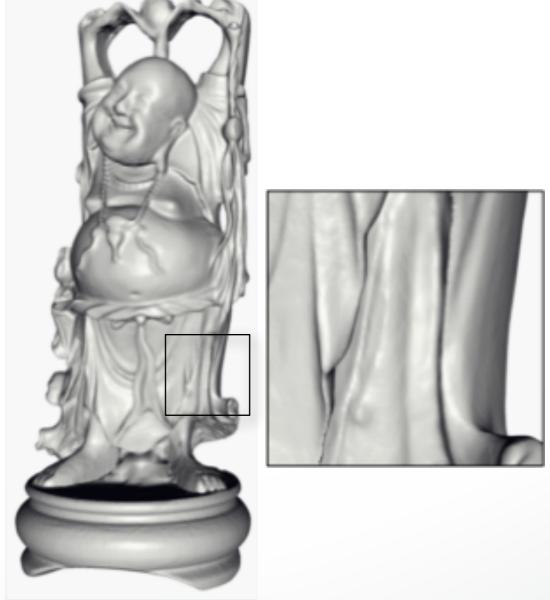




FFT Reconstruction

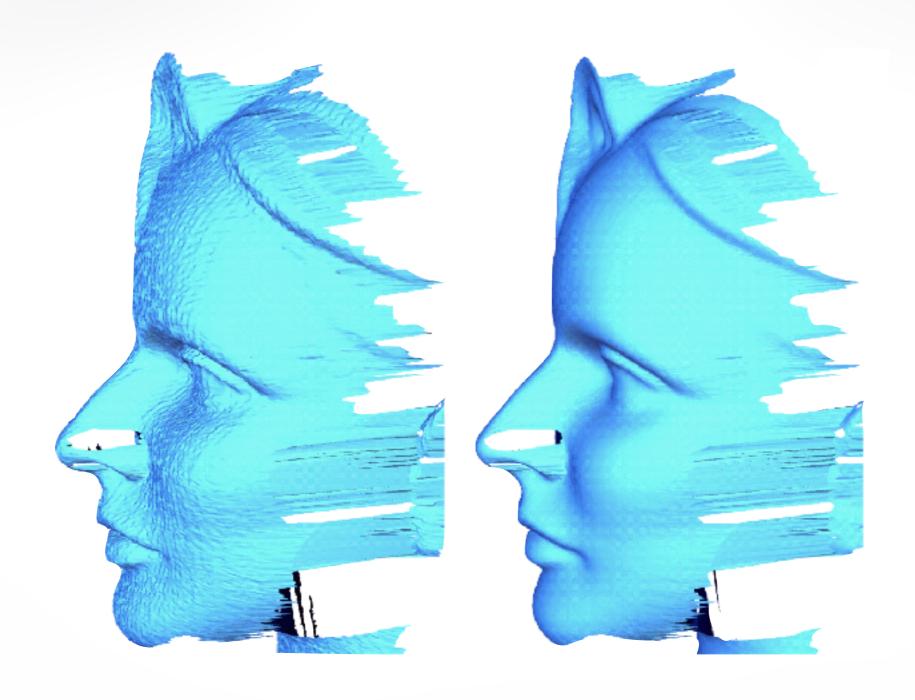
VRIP Comparison





Poisson Reconstruction

Next Time



Surface Smoothing

http://cs621.hao-li.com

Thanks!

