Fall 2014
CSCI 420: Computer Graphics

7.1 Rasterization

Hao Li

http:/cs420.hao-li.com

http://cs420.hao-li.com

Rendering Pipeline

Model-View Transform

. Vertex Shading
(\J
Projection '

Clipping

compute vertex attributes,
e.g. evaluate lighting model
to compute vertex color

Application

!

Geometry

(

Screen Mapping

Triangle Setup

l Image Formation ' - - | |
3 Triangle Traversal rasterize triangles and

— interpolate vertex attributes
. (Pixel Shading)

Merging

’ 2

Outline

e Scan Conversion for Lines
» Scan Conversion for Polygons

* Antialiasing

Rasterization (scan conversion)

Final step in pipeline: rasterization

From screen coordinates (float) to pixels (int)
Writing pixels into frame bufter

Separate buffers:

- depth (z-bufter),

- display (frame buffer),

- shadows (stencil buffer),

- blending (accumulation bufter)

Rasterizing a line

e

Digital Differential Analyzer (DDA)

 Represent line as

_n2-n Ay
X2 — X Ax

y=mx+h where m

* Then, it Ax = 1 pixel, we have Ay = m Az = m

Digital Differential Analyzer

 Assume write_pixel(int x, int y, int value)

for (I = x1; 1 <= X2; I++) r

{

y +=m;

write_pixel(i, round(y), color);

}

e Problems;

- Requires floating point addition

- Missing pixels with steep slopes:
slope restriction needed

Digital Differential Analyzer (DDA)

* AssumeO=sm =<1 But still requires

floati int additions!
« Exploit symmetry > Oaling point adaiions

e Distinguish special

CadsSesS g

&

i
Jras s

Bresenham’s Algorithm |

* Eliminate floating point addition from DDA
e Assume again0=sm < 1

 Assume pixel centers halfway between integers

Bresenham’s Algorithm Il

Decision variable a — b
-Ifa — b > 0 choose lower pixel
- Ifa — b < 0choose higher pixel

Goal: avoid explicit computation of @ — b
Step 1: re-scale d = (x2 — x1)(a — b) = Az(a — b)

d is always integer

Bresenham’s Algorithm lli

Compute d at step k£ + 1from d at step !

Case: j did not change (dg > 0)

- adecreases by m, } increases by m
-(a — b) decreases by 2m = 2(%)
Ax

- Ax(a — b)decreases by 2Ay

11

Bresenham’s Algorithm IV

» Case: j did change (di < 0)
- adecreases bym — 1,5 increaseSAby m — 1
- (a — b) decreases by 2m — 2 = 2(=2

Ax 2
- Ax(a — b) decreases by 2(Ay — Ax)

12

Bresenham’s Algorithm V

e SOdk_H = dj — 2Ay f dp >0
» And di41 = di, — 2(Ay — Ax) ifdx, <0

* Final (efficient) implementation:

void draw_line(int x1, int y1, int X2, int y2) {
int x, y = yO0;
int dx = 2*(x2-x1), dy = 2*(y2-y1);
int dydx = dy-dx, D = (dy-dx)/2;

for (x =x1 ; Xx<=x2 ; x++) {
write_pixel(x, y, color);
if (D>0)D -=dy;
else {y++; D -= dydx;}
s
h

13

Bresenham’s Algorithm VI

Need different cases to handle m > 1
Highly efticient
Easy to implement in hardware and software

Widely used

14

Outline

e Scan Conversion for Lines
» Scan Conversion for Polygons

* Antialiasing

15

Scan Conversion of Polygons

Multiple tasks:
- Filling polygon (inside/outside)

- Pixel shading (color interpolation)

- Blending (accumulation, not just writing)

- Depth values (z-buffer hidden-surface removal)

- Texture coordinate interpolation (texture mapping)

Hardware efficiency is critical
Many algorithms for filling (inside/outside)

Much fewer that handle all tasks well

10

Filling Convex Polygons

Find top and bottom vertices
List edges along left and right sides

For each scan line from bottom to top
- Find left and right endpoints of span, xl and xr
- Fill pixels between x| and xr

- Can use Bresenham'’s algorithm to update x| and xr

17

Concave Polygons: Odd-Even Test

 Approach 1: odd-even test

e For each scan line

- Find all scan line/polygon intersections
- Sort them left to right

- Fill the interior spans between intersections

e Parity rule: inside atfter
an odd number of

Crossings

18

Edge vs Scan Line Intersections

Brute force: calculate intersections explicitly
Incremental method (Bresenham’s algorithm)

Caching intersection information
- Edge table with edges sorted by Ymin
- Active edges, sorted by x-intersection, left to right

Process image from
smallest ymin up

19

Concave Polygons: Tessellation

* Approach 2: divide non-convex, non-flat, or non-simple
polygons into triangles

 OpenGL specification

- Need accept only simple, flat, convex polygons
- Tessellate explicitly with tessellator objects
- Implicitly if you are lucky

 Most modern GPUs scan-convert only triangles

20

Flood Fill

Draw outline of polygon

Pick color seed

Color surrounding pixels and recurse

Must be able to test boundary and duplication

More appropriate for drawing than rendering

QL
=D

1

Outline

e Scan Conversion for Lines
» Scan Conversion for Polygons

* Antialiasing

22

Aliasing

* Point sampling

-l
i
jt 38

e
LT

23

Moiré Patterns

’ "’/3 ‘ % e
J'mn LERT

{ L "‘

q il

‘:‘K!
S

24

Aliasing

Artifacts created during scan conversion

Inevitable (going from
continuous to discrete)

Aliasing (name from
digital signal processing):
we sample a continues
iImage at grid points

Effect
- Jagged edges
- Moire patterns

Moire pattern from
sandlotscience.com

2

http://sandlotscience.com

More Aliasing

No antialiasing

e e e o
L A

- —— — — e -
—— aay——ow—" r————
o
i

PR

.
:
.
L N

Antialiasing for Line Segments

e Use area averaging at boundary

/

(a)

/

,-'"'---

_H‘__,.-ﬂ""

(b)

e (C) is aliased, magnified

e (d) is antialiased, magnified

(c)

(d)

27

Antialiasing by Supersampling
Mostly for off-line rendering
(e.q., ray tracing)
Render, say, 3x3 grid of mini-pixels
Average results using a filter

Can be done adaptively)
- Stop if colors are similar

one
" pixel

- Subdivide at discontinuities)

28

Supersampling Example

No antialiasing

Ix3 supersampling

3x3 unweighted filter

o Other improvements
- Stochastic sampling: avoid sample position repetitions
- Stratified sampling (jittering)
perturb a regular grid of samples

20

Temporal Aliasing

Sampling rate is frame rate (30 Hz for video)
Example: spokes of wagon wheel in movies

Solution: supersample in time and average
- Fast-moving objects are blurred

- Happens automatically
with real hardware (photo

and video cameras)
» Exposure time is important
(shutter speed)
- Effect is called motion blur

Motion blur

30

Motion Blur Example

Achieve by
stochastic
sampling In
time

T. Porter, Pixar, 1984
16 samples / pixel / timestep

32

Summary

» Scan Conversion for Polygons
- Basic scan line algorithm
- Convex vs concave
- Odd-even rules, tessellation

e Antialiasing (spatial and temporal)
- Area averaging

- Supersampling
- Stochastic sampling

33

http://cs420.hao-li.com

34

http://cs420.hao-li.com

