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Rasterization (scan conversion)

Final step in pipeline: rasterization

From screen coordinates (float) to pixels (int)
Writing pixels into frame bufter

Separate buffers:

- depth (z-bufter),

- display (frame buffer),

- shadows (stencil buffer),

- blending (accumulation bufter)



Rasterizing a line
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Digital Differential Analyzer (DDA)

 Represent line as

_n2-n Ay
X2 — X Ax

y=mx+h where m

* Then, it Ax = 1 pixel, we have Ay = m Az = m




Digital Differential Analyzer

 Assume write_pixel(int x, int y, int value)

for (I = x1; 1 <= X2; I++) r

{

y +=m;

write_pixel(i, round(y), color);

}

e Problems;

- Requires floating point addition

- Missing pixels with steep slopes:
slope restriction needed



Digital Differential Analyzer (DDA)

* AssumeO=sm =<1 But still requires

floati int additions!
« Exploit symmetry > Oaling point adaiions

e Distinguish special
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Bresenham’s Algorithm |

* Eliminate floating point addition from DDA
e Assume again0=sm < 1

 Assume pixel centers halfway between integers




Bresenham’s Algorithm Il

Decision variable a — b
-Ifa — b > 0 choose lower pixel
- Ifa — b < 0choose higher pixel

Goal: avoid explicit computation of @ — b
Step 1: re-scale d = (x2 — x1)(a — b) = Az(a — b)

d is always integer




Bresenham’s Algorithm lli

Compute d at step k£ + 1from d at step !

Case: j did not change (dg > 0)

- adecreases by m, } increases by m
-(a — b) decreases by 2m = 2(%)
Ax

- Ax(a — b)decreases by 2Ay
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Bresenham’s Algorithm IV

» Case: j did change (di < 0)
- adecreases bym — 1,5 increaseSAby m — 1
- (a — b) decreases by 2m — 2 = 2(=2

Ax 2
- Ax(a — b) decreases by 2(Ay — Ax)
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Bresenham’s Algorithm V

e SOdk_H = dj — 2Ay f dp >0
» And di41 = di, — 2(Ay — Ax) ifdx, <0

* Final (efficient) implementation:

void draw_line(int x1, int y1, int X2, int y2) {
int x, y = yO0;
int dx = 2*(x2-x1), dy = 2*(y2-y1);
int dydx = dy-dx, D = (dy-dx)/2;

for (x =x1 ; Xx<=x2 ; x++) {
write_pixel(x, y, color);
if (D>0)D -=dy;
else {y++; D -= dydx;}
s
h
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Bresenham’s Algorithm VI

Need different cases to handle m > 1
Highly efticient
Easy to implement in hardware and software

Widely used
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Scan Conversion of Polygons

Multiple tasks:
- Filling polygon (inside/outside)

- Pixel shading (color interpolation)

- Blending (accumulation, not just writing)

- Depth values (z-buffer hidden-surface removal)

- Texture coordinate interpolation (texture mapping)

Hardware efficiency is critical
Many algorithms for filling (inside/outside)

Much fewer that handle all tasks well
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Filling Convex Polygons

Find top and bottom vertices
List edges along left and right sides

For each scan line from bottom to top
- Find left and right endpoints of span, xl and xr
- Fill pixels between x| and xr

- Can use Bresenham'’s algorithm to update x| and xr
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Concave Polygons: Odd-Even Test

 Approach 1: odd-even test

e For each scan line

- Find all scan line/polygon intersections
- Sort them left to right

- Fill the interior spans between intersections

e Parity rule: inside atfter
an odd number of

Crossings
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Edge vs Scan Line Intersections

Brute force: calculate intersections explicitly
Incremental method (Bresenham’s algorithm)

Caching intersection information
- Edge table with edges sorted by Ymin
- Active edges, sorted by x-intersection, left to right

Process image from
smallest ymin up
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Concave Polygons: Tessellation

* Approach 2: divide non-convex, non-flat, or non-simple
polygons into triangles

 OpenGL specification

- Need accept only simple, flat, convex polygons
- Tessellate explicitly with tessellator objects
- Implicitly if you are lucky

 Most modern GPUs scan-convert only triangles
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Flood Fill

Draw outline of polygon

Pick color seed

Color surrounding pixels and recurse

Must be able to test boundary and duplication

More appropriate for drawing than rendering
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Aliasing

* Point sampling
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Moiré Patterns
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Aliasing

Artifacts created during scan conversion

Inevitable (going from
continuous to discrete)

Aliasing (name from
digital signal processing):
we sample a continues
iImage at grid points

Effect
- Jagged edges
- Moire patterns

Moire pattern from
sandlotscience.com
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More Aliasing

No antialiasing
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Antialiasing for Line Segments

e Use area averaging at boundary

/
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e (C) is aliased, magnified

e (d) is antialiased, magnified

(c)

(d)
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Antialiasing by Supersampling
Mostly for off-line rendering
(e.q., ray tracing)
Render, say, 3x3 grid of mini-pixels
Average results using a filter

Can be done adaptively )
- Stop if colors are similar

one
" pixel

- Subdivide at discontinuities )

28



Supersampling Example

No antialiasing

Ix3 supersampling

3x3 unweighted filter

o Other improvements
- Stochastic sampling: avoid sample position repetitions
- Stratified sampling (jittering)
perturb a regular grid of samples
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Temporal Aliasing

Sampling rate is frame rate (30 Hz for video)
Example: spokes of wagon wheel in movies

Solution: supersample in time and average
- Fast-moving objects are blurred

- Happens automatically
with real hardware (photo

and video cameras)
»  Exposure time is important
(shutter speed)
- Effect is called motion blur

Motion blur
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Motion Blur Example

Achieve by
stochastic
sampling In
time

T. Porter, Pixar, 1984
16 samples / pixel / timestep
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Summary

» Scan Conversion for Polygons
- Basic scan line algorithm
- Convex vs concave
- Odd-even rules, tessellation

e Antialiasing (spatial and temporal)
- Area averaging

- Supersampling
- Stochastic sampling
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